
How to Retrieve Text from a Binary .doc File

DIaLOGIKa/makz/math/wk/divo 4 March 2008

Contents
Introduction ... 2

How Text is Stored in a .doc File ... 2

Streams in a .doc File ... 2

The piece table ... 2

Algorithm for Retrieving Text .. 3

Loading the FIB .. 3

Loading and Parsing the piece table .. 3

DIaLOGIKa / makz/math/wk 4 March 2008 |P a g e | 2

Introduction
This document explains how the text content in a binary .doc file can be identified and extracted.

The following descriptions and algorithms are based on the Microsoft Word 2007 Binary File Format

Documentation and our own findings.

How Text is Stored in a .doc File
The binary .doc files use the structured storage format (aka compound binary file format) to save

several streams in one file. The text and its attributes are stored in two of these streams.

Note: For information about the structured storage format please have a look at the “Windows

Compound Binary File Format Specification”

Streams in a .doc File
A .doc file contains a stream called WordDocument consisting of a header part and a text part. The

header, called File Information Block or FIB, contains information about the document and pointers

into the text part and into other streams. The text part contains all text of the document (including

footnotes, header and footer lines, etc.), but, not necessarily consecutively, i.e. it might be

fragmented.

Another stream, called 0Table or 1Table (a flag in the FIB determines which name is actually used for

this stream, see below) contains information about the fragmentation of the text part. This

information is called piece table.

The piece table
The piece table is a data structure that describes the logical sequence of characters in the document:

The text part in the WordDocument stream can be divided into several subparts or pieces. Each piece

contains information about the encoding and the logical place in the text.

Word splits the text into several pieces if different encodings are used for different paragraphs or

text runs, example:

Hello World

…some more CP1252 text…

αβγ – Greek is nice!

The text in this example would be divided into two pieces:

 The first piece contains the all the characters up to the Greek characters and is encoded

using the codepage 1252.

 The second piece contains the Greek and remaining characters and has Unicode encoding

DIaLOGIKa / makz/math/wk 4 March 2008 |P a g e | 3

Note: We assume that Word does this switch between CP1252 and Unicode encoding due to

optimization reasons. If the CP1252 text part is shorter than a certain (unknown) threshold all

characters are Unicode-encoded.

Algorithm for Retrieving Text
To retrieve text from a document, the piece table has to be loaded and parsed and the pieces

assembled in the right sequence.

The following algorithm assembles the text of the document and saves it in a string variable:

string text = "";

Loading the FIB
The FIB has a fixed length of 1472 bytes (Word 2003 and higher; earlier versions might have a smaller

FIB) and starts at the first byte in the WordDocument stream of the .doc file. For the following

examples, we assume that the streams of a .doc file can be treated as C# streams (we actually use

our own assembly – called StructuredStorageReader – to access the structured storage file format.

This assembly provides for a stream-like object).

Stream wordDocumentStream = new Stream("WordDocument");

byte[] fib = new byte[1472];

wordDocumentStream.Read(fib, 0, 1472);

Loading and Parsing the piece table
The FIB contains two variables (FC/LCB pair) that specify the beginning of the data structure holding

the piece table (FC = file character position) and the length (LCB = long count of bytes). This

information is placed in the table stream, i.e. the FC is a pointer to an address in that stream. Both

values are 32 bit integer values and are stored at offset 0x01A2 and offset 0x01A6, respectively.

Note: The Word file format specification describes this FC/LCB pair as “Offset in table stream of

beginning of information for complex files.” It should be borne in mind that this is not correct since

the piece table information is also used for non-complex files.

UInt32 fcClx = System.BitConverter.ToUInt32(fib, 0x01A2);

UInt32 lcbClx = System.BitConverter.ToUInt32(fib, 0x01A6);

To load the piece table we must determine how the table stream was named by Word. The FIB

contains a flag which decides if the stream was saved as 0Table or as 1Table. Bit 0x0200 in word

0x000A of the FIB determines how the table stream is named:

bool flag1Table = ((fib[0x000A] & 0x0200) == 0x0200);

string tableStreamName = "0Table";

if(flag1Table)

 tableStreamName = "1Table";

Excerpt from a hex dump of the FIB:

DIaLOGIKa / makz/math/wk 4 March 2008 |P a g e | 4

(0000) EC A5 C1 00 7D 80 09 04 00 00 F0 12 BF 00 00 00 }...........

(0010) 00 00 00 10 00 00 00 00 00 08 00 00 DE 4C 00 00 L..

…

(0190) 00 00 A7 19 00 00 A2 02 00 00 49 1C 00 00 74 00 I...t.

(01A0) 00 00 96 17 00 00 2D 00 00 00 00 00 00 00 00 00 -.........

(01B0) 00 00 00 00 00 00 00 00 00 00 55 15 00 00 00 00 U.....

…

Note: All the number values shown in this and the following hex dumps are in swapped byte order

(“little endian”).

After that we load the data structure holding the piece table into the byte array clx:

Stream tableStream = new Stream(tableStreamName);

byte[] clx = new byte[lcbClx];

tableStream.Read(clx, fcClx, lcbClx);

The clx byte array can contain multiple substructures and only one of these substructures is the piece

table. Each substructure starts with a byte which denotes the type of the substructure, followed by a

value indicating the length of the substructure.

If the substructure describes a piece table the value of this byte is 2, otherwise 1. The length of the

entry is a 32 bit value for a piece table and an 8 bit value for all other entries.

In order to identify the piece table in the clx byte array, the following algorithm can be used:

0x12F0 AND 0x0200: 1Table is used

0x00001796: complex information position in 1Table

0x0000002D: complex information length in 1Table

DIaLOGIKa / makz/math/wk 4 March 2008 |P a g e | 5

int pos = 0;

bool goOn = true;

while (goOn)

{

 byte typeEntry = clx[pos];

 if (typeEntry == 2)

 {

 //this entry is the piece table

 goOn = false;

 Int32 lcbPieceTable = System.BitConverter.ToInt32(clx, pos + 1);

 byte[] pieceTable = new byte[lcbPieceTable];

 Array.Copy(bytes, pos + 5, pieceTable, 0, pieceTable.Length);

 }

 else if (typeEntry == 1)

 {

 //skip this entry

 pos = pos + 1 + 1 + clx[pos + 1];

 }

 else

 {

 goOn = false;

 }

}

The piece table itself contains two arrays:

 The first array contains n+1 logical character positions (n is the number of pieces). The

entries are the logical start and end positions of the pieces in the text sequence, i.e. the first

piece starts at logical position 1 and extends to position 2, the second starts at position 2,

etc. Logical position x means that this is the x-th character in the document, i.e. this is not the

file character position in the WordDocument stream. The positions are 32 bit values.

 The second array contains n piece descriptor structures. Each structure has a length of 8

bytes. The physical location of the piece inside of the WordDocument stream and the

encoding of the text can be found in these 8 bytes from byte 3 to byte 6. This file character

(FC) position is a 32 bit integer value. The second most significant bit is a flag that specifies

the encoding of the piece: if the bit is set, the piece is CP1252-encoded and the FC is a word

pointer; otherwise, the piece is Unicode-encoded and the FC is a byte pointer.

DIaLOGIKa / makz/math/wk 4 March 2008 |P a g e | 6

Hex dump from a 1Table stream containing a piece table with 3 pieces:

…

(1780) 59 03 01 00 01 00 00 00 00 00 00 00 00 00 00 00 Y...............

(1790) 00 00 00 00 00 00 02 28 00 00 00 00 00 00 00 00 (........

(17A0) 3C 00 00 00 3D 00 00 6F 3D 00 00 70 00 00 10 00 <...=..o=..p....

(17B0) 40 00 00 70 00 00 44 00 00 00 00 70 00 00 4C 00 @..p..D....p..L.

(17C0) 00 00 00 FF FF 01 00 00 00 07 00 55 00 6E 00 6B U.n.k

(17D0) 00 6E 00 6F 00 77 00 6E 00 FF FF 01 00 08 00 00 .n.o.w.n........

…

int pieceCount = (lcbPieceTable - 4) / 12;

for (int i = 0; i < pieceCount; i++)

{

 //get the position

 Int32 cpStart = System.BitConverter.ToInt32(pieceTable, i * 4);

 Int32 cpEnd = System.BitConverter.ToInt32(pieceTable, (i+1) * 4);

 //get the descriptor

 byte[] pieceDescriptor = new byte[8];

 int offsetPieceDescriptor = ((pieceCount +1)*4) + (i*8);

 Array.Copy(pieceTable, offsetPieceDescriptor, pieceDescriptor, 0, 8);

}

The interpretation of the encoding flag and the calculation of the FC pointer are as follows:

UInt32 fcValue = System.BitConverter.ToUInt32(pieceDescriptor, 2);

bool isANSI = ((fcValue & 0x40000000) == 0x40000000);

Int32 fc = fcValue & 0xBFFFFFFF;

Encoding encoding = Encoding.GetEncoding(1252);

Int32 cb = cpEnd – cpStart;

if (!isANSI)

{

 encoding = Encoding.Unicode;

 cb *= 2;

}

Now, the text which is described by that piece can be appended to our text string as follows:

piece table ID

length of piece table 0x00000028

logical start of piece 1

0x00003C00: logical end of

piece 1 and start of piece 2

0x40001000: CP1252

encoding (0x4) and

position 0x1000/2

DIaLOGIKa / makz/math/wk 4 March 2008 |P a g e | 7

byte[] bytesOfText = new byte[cb];

wordDocumentStream.Read(bytesOfText, bytesOfText.Length, fc);

text += encoding.GetString(bytesOfText);

Iterating over all the pieces in the piece table will finally append all the text in the document to our

text string.

Note: It should be borne in mind that the text of header and footer lines, footnotes, endnotes, etc. is

also stored inside the text part of the WordDocument stream; consequently, our text string will also

contain the text of these elements.

