
Freeform Shapes in the Office Drawing Format

DIaLOGIKa/makz/clam 10 February 2009

Contents
Introduction ... 2

Short Introduction to the Escher Architecture .. 2

The Representation of a Freeform Shape ... 3

When is My Shape a Freeform Shape? .. 3

Defining the Polygon of a Freeform Shape .. 3

The IMsoArray Structure ... 3

The pSegmentInfo Structure ... 4

The pVertices structure ... 4

Building the path ... 4

Mapping Freeform Shapes to VectorML ... 5

Mapping Freeform Shapes to DrawingML .. 6

DIaLOGIKa / makz 10 February 2009 |P a g e | 2

Introduction
This document explains how a free formed shape is stored in the binary Word and PowerPoint files.

The following descriptions and algorithms are based on the Office Drawing97- 2007 Binary Format

Specification and our own findings.

This guide implies a basic knowledge of the Office Drawing Layer (Escher) format and should be used

as a supplement to the official specification in order to facilitate the understanding of some loose

points in the specification.

Short Introduction to the Escher Architecture
The Office Drawing Format is based on a container hierarchy that is called “Escher”. In Escher every

object is called “record”. A record consists of a header and a body. The header defines some

information about the record such as the type of the record. If the type is a container type the record

can hold other records in its body, if it is an atom record it can only hold data in its body.

Shapes are usually defined as ShapeContainer records. Such a ShapeContainer contains at least one

Shape record and it may contain several ShapeOptions records:

The Shape record holds basic information about the shape itself: e.g. the type of the shape: is it a

rectangle or a triangle?

The ShapeOptions records mainly hold formatting information like the color of the outline or what fill

effects are applied to the shape.

A ShapeOptions record isn’t a container record but it stores several OptionEntry structures inside the

body. Each OptionEntry has an ID that identifies the property that is modified and a simple property

value that is limited to a 32bit integer. It can optionally have a complex value that is a byte array of a

much larger size.

ShapeContainer

Shape

ShapeOptions

ShapeOptions

ShapeOptions

DIaLOGIKa / makz 10 February 2009 |P a g e | 3

The Representation of a Freeform Shape

When is My Shape a Freeform Shape?
A shape can be identified as a freeform shape when the Instance value of the Shape record’s header

is set to 0. The Instance of a shape declares the type of the shape. The value 0 means

“msosptNotPrimitive”.

Freeform shapes have no predefined type which means that the rendering application cannot know

its polygon by default. A rectangle will always look like a rectangle but a freeform shape is drawn by

the user.

For this reason a freeform shape must store its polygon in the file.

Defining the Polygon of a Freeform Shape
The Office Drawing 97-2007 Specification calls the shape’s polygon “path”. Such a path consists of

rendering instructions that allows the rendering application to display the shape.

The path is stored in two OptionEntry structures:

 ID 326 = pSegmentInfo

 ID 325 = pVertices

The pSegmentInfo entry is an array that contains rendering commands. The pVertices entry is an

array that contains the parameters (points) of the commands stored in pSegmentinfo.

Both arrays are of the format IMsoArray.

The IMsoArray Structure

A IMsoArray consists of 3 16bit Integer values followed by the data in the array:

(0000) 0E 00 10 00 02 00 00 40 00 AC 01 00 00 AC 01 00

(0010) 00 AC 01 00 00 AC 01 00 00 AC 01 00 00 AC 01 60

(0020) 00 80

The first Integer nElems defines the length of the array, nElemsAlloc is an unsigned integer that

specifies the maximum number of elements this record can contain. This value MUST be greater than

or equal to nElems and cbElem is the length of every single element in bytes. If cbElem has the value

0xfff0 then every element is a truncated 8 byte element (only the element’s 4 low-order bytes are

recorded, the 4 high-order bytes are 0x0).

The data block contains the array elements and has a size of nElems * cbElem.

nElems

nElemsAlloc

cbElem

data

DIaLOGIKa / makz 10 February 2009 |P a g e | 4

The pSegmentInfo Structure

The stored elements are segments of the path. Each segment has a length of 2 bytes. The segment

type is stored in the upper 3 bits; the segment count is stored in the lower 3 bits:

(0000) 0E 00 10 00 02 00 00 40 00 AC 01 00 00 AC 01 00

(0010) 00 AC 01 00 00 AC 01 00 00 AC 01 00 00 AC 01 60

(0020) 00 80

 = 0x4000

The first segment can be split into:

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 = 2 = 0

The segment type must be mapped to the enumeration MSOPATHTYPE:

msopathLineTo = 0,

msopathCurveTo,

msopathMoveTo,

msopathClose,

msopathEnd,

msopathEscape,

msopathClientEscape,

msopathInvalid

A value of 2 corresponds to the “Move To” command.

The segment count gives the count to repeat the command. Commands which cannot be repeated (

like the “Move To” command) will have a count of 0.

The pVertices structure

The elements stored in the pVertices array are points in the coordinate system. Each point has a

length of 4 bytes. The upper two bytes are a 16bit Integer standing for the x-coordinate, the lower

16bit stand for the y-coordinate:

(0000) 06 00 06 00 F0 FF 00 00 7C 13 00 00 BB 08 6F 06

(0010) 00 00 24 0D 8D 08 24 0D 93 13 00 00 7C 13

 = X 0x0000, Y 0x137C

Building the path

The pSegmentInfo array defines the sequence of the rendering commands, but some of the

commands need arguments. The “Move To” command from the upper example needs a target point

in the coordinate system where to move to.

Segment 1

SegmentTyp

e

SegmentCount

Point 1

DIaLOGIKa / makz 10 February 2009 |P a g e | 5

Every command has a fix count of required arguments. “Line To” and “Move To” require one point as

target, “Curve To” requires 3 points to build a Bezier curve. The other commands don’t need any

argument.

So we can build the path by following the commands in the pSegmentInfo array. Escape commands

store editing information and can be ignored:

 pSegmentInfo Count

1 msopathMoveTo 0

 msopathEscape 0

2 msopathLineTo 1

 msopathEscape 0

3 msopathLineTo 1

 msopathEscape 0

4 msopathLineTo 1

 msopathEscape 0

5 msopathLineTo 1

 msopathEscape 0

6 msopathLineTo 1

 msopathEscape 0

7 msopathClose 1

8 msopathEnd 0

This path draws the following shape

1) Move to: X = 0 Y = 4988

2) Line to: X = 0 Y = 2235

3) Line to: X = 1647 Y = 0

4) Line to: X = 3364 Y = 2189

5) Line to: X = 3364 Y = 5011

6) Line to: X = 0 Y = 4988

7) Close the path

8) End the path

Mapping Freeform Shapes to VectorML
Freeform Shapes are also represented by a path in VectorML. This path is a string that is used in an

XML attribute. All commands and the points are serialized into specific string syntax:

<v:shape path="m0,4988l0,2235l1647,0l3364,2189l3364,5011l0,4988xe" />

The commands are mapped to single characters (shown in bold and red in the example above):

msopathLineTo = l

msopathCurveTo = c

 pSegmentInfo

1 X = 0 Y = 4988

2 X = 0 Y = 2235

3 X = 1647 Y = 0

4 X = 3364 Y = 2189

5 X = 3364 Y = 5011

6 X = 0 Y = 4988

1

2

3

4

5 6 7 8

DIaLOGIKa / makz 10 February 2009 |P a g e | 6

msopathMoveTo = m

msopathClose x

msopathEnd = e

Mapping Freeform Shapes to DrawingML
Freeform shapes are represented as a custom geometry (the custGeom element) in DrawingML. It

consists of the entries in the corresponding pVertices array (specified inside the cxnLst sub-element)

and the entries in the corresponding pSegmentInfo array (specified inside a path element in the

pathLst sub-element).

Each point in the pVertices array is mapped to a cxn element. The coordinates are specified in a pos

sub-element.

Each entry in the pSegmentInfo array is mapped to a specific command element. E.g.

msopathLineTo commands are mapped to lnTo elements and msopathMoveTo commands are

mapped to moveTo elements. The parameters (points) of a command are specified in pt sub-

elements.

<a:custGeom>

 <a:cxnLst>

 <a:cxn ang="0">

 <a:pos x="0" y="725" />

 </a:cxn>

 <a:cxn ang="0">

 <a:pos x="817" y="0" />

 </a:cxn>

 <a:cxn ang="0">

 <a:pos x="2495" y="680" />

 </a:cxn>

 <a:cxn ang="0">

 <a:pos x="1678" y="1497" />

 </a:cxn>

 <a:cxn ang="0">

 <a:pos x="0" y="725" />

 </a:cxn>

 </a:cxnLst>

 <a:rect l="0" t="0" r="r" b="b" />

 <a:pathLst>

 <a:path w="2495" h="1497">

 <a:moveTo>

 <a:pt x="0" y="725" />

 </a:moveTo>

DIaLOGIKa / makz 10 February 2009 |P a g e | 7

 <a:lnTo>

 <a:pt x="817" y="0" />

 </a:lnTo>

 <a:lnTo>

 <a:pt x="2495" y="680" />

 </a:lnTo>

 <a:lnTo>

 <a:pt x="1678" y="1497" />

 </a:lnTo>

 <a:lnTo>

 <a:pt x="0" y="725" />

 </a:lnTo>

 <a:close />

 </a:path>

 </a:pathLst>

</a:custGeom>

